#Change11 On MOOC – my reflection Part I

Doug’s post on what’s the problem with MOOC provides great food for thoughts.  My first response here.  I am still wondering how Teaching as Design Science would work in MOOC (connectivist approach) mainly because of the often challenging balance that is required to be achieved between open emergent structure and closed prescriptive structure with definite outcomes and linear learning pathway.  This was revealed in past researches, where some novices preferred structured facilitation and guidance, whereas veterans would likely prefer to explore and self-organise to achieve their goals.  There are also challenges relating to autonomy, power, and assessment (and accreditation) which often might not be easily resolved in the traditional MOOC (i.e. within an institutional framework), where the professors would likely decide on the course design and assessment criteria well in advance, leaving little leeway for “negotiation” in the content and assessment.  These could be revealed through the various feedback as shown in surveys, and your post has also highlighted some of the issues associated with the course design.  I agree with your view: ” ”Connecting” learners to one another or exposing them to content may often not be sufficient to magically cause learning to happen or to cause significant changes in beliefs and practice.  Similarly, making content “open” isn’t sufficient to magically cause learning to happen, although it is a good first step (enabling and expanding access to learning opportunities for more people).”

I have posted here relating to learning with Connectivism and ANT.

I have posted learning with external sources (or learning that may reside with non-human appliance here)

You may treat my ATM metaphor as follows:

ATM – denotes Computers – hardware/software, etc any internet, ICT, Learning Management Systems (LMS), Search Engines, Web 2.0 tools – blogs, social networking tools: Youtube, Myspace, wiki, Ning, Delicious, Twitter & Tweeter, FB, and many others emergent technologies or tools like Cloud computing, Mobiles, (non-human appliances).
Money – denotes the resources resided on the internet or social networks (or even our own networks (brain?, conceptual networks?) if there are connections and interactions of these networks)- information, links, articles, extracts, aggregates of “knowledge” or any artifacts – on-line or hard copy of books, e-portfolios etc.  So fake money could include fake information, incorrect information or spam.
However, you could also use abstract concept of these like virtual ATM, virtual money (such as internet banking) to represent the concepts behind learning – the immersive virtual learning ecology and SL with Linden as the Money etc.. This could be linked to all the learning concepts as introduced by Stephen Downes – where learning is ontology, non-propositional, emergent, and a continuous process that DOES NOT MEAN the acquisition of knowledge BUT merely as a networking process….which to me would be another way of looking into learning, from a more CONNECTIVIST and philosophical point of view.
Would this be a “connectivist” approach towards connectivism where all different approaches (all the metaphors suggested as per the posts, including Roy, Ulop, Frances (ANT), and many others from Instructivist, Cognitivist, Constructivist, Connectionist approaches and those of Stephen and Georges’ Connectivism principles are connected and interacted to reveal an emergent pattern of knowledge and learning? I don’t know!
Though there may be a lot of uncommon or “seemingly conflicting” views amongst them, I could see a lot of common grounds connecting them together, just like the metaphor of the digestion system in our human body.

I have tried distinguishing human from non-human learning here

This is my response to Ulop and Roy on our Community Network on Connectivism:

Great that we have come to some common themes on learning.
I think it’s imperative to distinguish human learning from the learning “that may reside with non-human appliances”.
An example is when you go to ATM to get money. The ATM has “learnt” how to issue the correct amount of money you have keyed in and issue you with the money with receipt. So the ATM processes your order based on an algorithm and a process run by the machine and computer, and that is taught by human. Such processing of money for you is similar to concepts adopted by artificial intelligence. Now, what happens if someone put fake money into the ATM. So you will also receive those fake money when you use those ATM. For the ATM, it has “learnt” to give you the money you have requested, but it hasn’t learnt to check if the money stored was fake or not. So, if you receive the fake money, it isn’t the “fault of the ATM” and the ATM is 100% accurate in learning and “highly intelligent” in accordance to our human initial design.

Once you realise such problem of fake money, you may then re-design the ATM so that it could check for fake money. So, you would then teach the ATM to check the fake money (bank notes) before it issues any money. Through this process of learning by you and your re-design of the ATM, the ATM is learning through you as human how to ensure that only real money is issued to the customer. The ATM itself can only learn how to do the job through human intervention. By itself, it isn’t as smart as human. And sometimes, the ATM may fail to check whether the bank notes are fake or not if there are changes in the design of the bank notes or there could be mistakes made due to the malfunction of the “ultra-violet” detector (say due to failure of the detector) of the ATM. So, you may then rely back on human to check if the money is fake or not.
The above metaphor is again trying to illustrate how smart human are as compared to machine. Similarly, I don’t think there has been any machine that is built which could simulate our digestive system so far, as we could cleanse any toxins through our body organs and eject waste which are useless for us. I would like to learn if such a machine exists in this world which could do all these!

This ATM example illustrates that:
1. Human learns through a biological and a neuro process with the brain (just like the digestion metaphor), and it is different from machine learning in that the machine can ONLY learn when the human teaches it (even if it’s artificial intelligence). You may claim that a machine can do some “learning” by itself, but as the above example illustrates, it must start from human. And a machine may fail to learn if the human doesn’t teach it to learn properly – fake money will be issued to customers without notice or warning, though the ATM is functioning 100% effectively and efficiently.
2. In human learning, there are some common learning principles with non-human learning (animals or even appliances). These include the observable – the Stimulus-response classical conditioning by Pavlov. Classical conditioning is the study of learning which involves reflex responses, in which a neutral stimulus comes to elicit an existing reflex response. Please note that Pavlov’s work on the physiology of digestion, begun in 1879, earned him the Nobel Prize in 1905. He first became aware of reflexes by reading Sechenov’s work while still at seminary, but his own research on what became known as classical conditioning did not begin until about 1902. At this time, while still studying in digestion in dogs, he noticed what he called ‘psychic salivation’ – a dog would salivate before it was actually given food. Since Pavlov believed that digestion involved series of reflexes, he set out to determine what controlled this anticipatory response. Ultimately, his work on conditioning overshadowed the research which had earned him the Nobel Prize.
3. I try to distinguish the human from non-human learning to avoid the confusion arising out of the studying of the non-human appliances, ants, spiders, pests in their life cycle, its ecology from human, especially when we are referring specifically to learning over the digital ecology, the net, virtual networks, and communities. There may be a lot of learning embedded in such social and ecological studies, and so I will leave it to the Biologists, Sociologists and Social Scientists or YOU to investigate. Sometimes, there might be a similar pathway in adopting the “behavioural” approach by observing the behavior of those creatures and generalizing them on human. Would this be what Pavlov had tried to do? However, I do think we have overlooked his work on the physiology of digestion. I have now used digestion as a metaphor on learning. I must admit that I don’t know all his work on signal conditioning (and have forgotten what I have read years ago) until you asked me now. Please see Approaches to Psychology by William E. Glassman 2000 (that I bought more than 8 years ago).

Ulop and Roy, I am interested in learning how these could be further explored. I think it could lead to a great concept map which deploy all the learning components as cited by Roy and your critical analysis of learning. Let’s continue…

Could we contrast these networked learning with

The Actor Network Theory that looks at the socio-technical aspects?

What do these Theories have in common, and what about their differences?

Postscript: Just read this Verhagen, P. (2006) Connectivism: A new learning theory? http://elearning.surf.nl/e-learning/english/3793 on 26 Feb 11.  that also discusses on learning that may reside with non-human appliance.  I have also shared my views here.

I will continue to reflect on the recent MOOC initiatives and Khan Academy in coming posts.


4 thoughts on “#Change11 On MOOC – my reflection Part I

  1. Pingback: #Change11 On MOOC – my reflection Part I | gpmt | Scoop.it

  2. Commenting on your first part and in particular:
    “I am still wondering how Teaching as Design Science would work in MOOC (connectivist approach) mainly because of the often challenging balance that is required to be achieved between open emergent structure and closed prescriptive structure with definite outcomes and linear learning pathway.”
    Yes, had thought the same – you describe the situation well in this sentence. Also, your comment on novices and veterans resonated.
    What is the learning arena for MOOCS? For the Trad MOOCS it seemed to be pitched right, to the veterans. But the New MOOCS seem to be aimed at undergraduates and those new to the business, novices perhaps. Certainly the Bonkopen MOOC is a highly taught course, much more of the closed prescriptive type (and non the worse for that, but it is different from the Trad MOOC defined ones).
    Is it necessary to differentiate between the Trad and New MOOCs?

  3. Hi George, I shared your views, on the learning arena for MOOCs. I have shared my views in my post https://suifaijohnmak.wordpress.com/2011/12/20/change11-new-learning-initiative-with-mit-and-future-of-education-and-learning/ “the New MOOCS seem to be aimed at undergraduates and those new to the business, novices perhaps. Certainly the Bonkopen MOOC is a highly taught course, much more of the closed prescriptive type” I think a target market for MOOCs could be an interesting research as this could reveal and confirm the cohort of learners who would be interested in particular types of MOOCs. MOOCs of a technical or technological nature would appeal more to information technologists, engineers and applied scientist (students, teachers, lecturers). These MOOCs also fit well in the University curriculum studies, so undergraduates and may be graduates of the particular disciplines would surely benefit much from the study. Would those MOOCs (computer science, electrical engineering) appeal to social science students or scientists? I would be interested to learn how people choose the MOOCs, and how people learn through those MOOCs. With the watching of the short video clips, followed by quizzes, or engagement in forum discussion, and assignment and exam, this seems to be the typical “instructivist” – behavioral and cognitivist approach towards learning, coupled with constructivist approach if the students are supported and engaged in forum or blog discussion. The main goals with these MOOCs are still to ensure more students are able to pass the course, achieve the prescribed learning outcomes, and perform to the standards required through quizzes, tests and examinations. It could be interesting to see how students would self-organise their learning, without “too much” guidance by the professors. There could be challenges like people sharing their answers to quizzes, assignments, or examination questions and answers, that may be viewed as inappropriate behavior. Cheating, plagiarism and copying of each others’ answers could occur when standard tests and examinations are used. In the case of connectivist courses, learners would likely aggregate, remix, re-purpose and feed-forward their responses (in their assignment) (probably based on individual’s PLE), and so it is unlikely be “treated” as plagiarism, or copying, unless the whole response (like a blog post) is a mere repetition or copy of others’ posts. May be a connectivist approach would challenge both students and professors to think of innovative and creative ways to develop assessment, thus overcoming the problem of plagiarism inherent in the assignments or examinations. Also, this would encourage educators and learners to focus more on learning – which means understanding, thinking, reflection, application and action, that would be reflective in getting a good grade in passing the course.
    Is it necessary to differentiate the trad & new MOOCs? Yes.
    What would you like to add, in the criteria of differentiation?

  4. Pingback: #Change11 On MOOC - my reflection Part I | MOOC...

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s